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1. Introduction 

Titanium alloyed with 6% aluminum and 4% vanadium (Ti-6Al-4V) is a material of increasing 
importance in armor applications for the U.S. Army because of its light weight (compared to steel) 
and its high strength.  The U.S. Army Research Laboratory (ARL) has developed a low cost 
alternative to the common (but expensive) aircraft-grade Ti-6Al-4V.  Extensive Hopkinson Bar 
tests have been conducted on this low cost material (subsequently referred to as simply Ti-6Al-
4V), including Casem’s recent experiments at strain rates as great as 50,000/s (1), in an effort to 
understand the material’s dynamic behavior.  The ultimate goal is to develop a capability to predict 
the material’s strength response during the extreme loading conditions encountered during ballistic 
impact and penetration.  This goal would be achieved if a suitable strength model were established 
for use in finite element and finite difference shock physics codes, such as EPIC1 (2) and CTH2 
(3). 

Toward this end, several existing strength models were considered as candidates for calibration 
with the use of the new Hopkinson Bar data: the Johnson-Cook strength model and the Zerilli-
Armstrong series of models.  The Johnson-Cook model (4) calculates yield strength by the 
relation 
 [ ][ ][ ]mn TCBAY ** 1ln1 −++= εε &  (1) 

In equation 1, A, B, C, n, and m are material constants, ε  is the strain, *ε&  is the non-dimensional 
strain rate, and T* is the homologous temperature.  This model was found to be inadequate for 
the Ti-6Al-4V material since it does not model the nonlinear strength behavior (versus the 
logarithm of strain rate) exhibited by the material and does a poor job of modeling two material 
characteristics (discussed in more detail later) that are important to predicting localization:  the 
coupling of thermal and rate effects and stress saturation (approaching an asymptotic value or 
reaching a maximum value) at high strains3.  Nevertheless, this model was calibrated with 
Casem’s data and tested in simulations of penetration experiments as a reference for comparison.  
Details are discussed in a later section. 

The Zerilli-Armstrong models are physically based, and there are several generations of models.  
Initially, the model addressed metals with either fcc (face-centered cubic) or bcc (body-centered 
cubic) crystal structures (5,6).  The yield strength is 

 [ ] { } nTCC CeCCAY εε ε
5

ln
21

43 +++= +− &  (2) 

                                                 
1EPIC, which stands for Elastic-Plastic Impact Code, uses a Lagrangian frame to solve the equations of motion. 
2CTH, which is not an acronym, uses an Eulerian frame to solve the equations of motion.  Both EPIC and CTH 

are widely used across the defense research and development community to model problems in shock wave 
propagation. 

3Unless otherwise noted, the term strain refers to equivalent plastic strain. 
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in which ε is strain, ε&  is strain rate, and T is temperature.  By appropriate choice of the constants 
(A, C1, C2, C3, C4, and C5), the model is applied to either fcc (C1=C5=0) or bcc (C2=0) metals.  
This model was used with success in earlier work (7).  Zerilli and Armstrong expanded the 
applicability of the fcc/bcc model by the development of a newer representation for hcp (hexagonal 
closely packed) metals (8,9).  Then they extended their hcp model to address shear instability (10), 
an important consideration for Ti-6Al-4V.  This more recent hcp form was desired here for two 
reasons.  First, the hcp alpha phase in Ti-6Al-4V dominates the microstructure until transformation 
to the bcc beta phase occurs at approximately 996 oC (11).  Thus, hcp behavior is an important 
component of the material’s ballistic behavior, and hcp behavior can be only approximately 
described by the fcc/bcc model.  Second, a model that would address shear instability and the 
resultant strain localization was desired for the present effort.  This model, calibrated with the new, 
higher strain rate data, was expected to give better results than were obtained in the earlier work. 
 

2. The Modified Zerilli-Armstrong Model 

The localizing strength model proposed by Zerilli and Armstrong (10) for the strength of 
predominantly hcp Ti-6Al-4V is somewhat different from equation 2: 

 ( ) T
r

T eeCeCCY r αεεβ ε −−− −++= /
210 1  (3) 

Here, C0, C1, and C2 are material constants, α and β are functions of strain rate (described next), 
and T is the absolute temperature.  The expression under the radical will be referred to as the 
“strain function”.  The strain is ε, and the material constant εr (named the “recovery strain” by 
Zerilli and Armstrong), affects the strain at which saturation of the stress is achieved. 

The square root comes from theoretical (i.e., ideal) considerations of dislocation motion during 
the plastic deformation of crystals given by Taylor (12).  In that work, Taylor concluded that the 
yield stress depends on the square root of strain (and other factors).  The problem with a simple 
square root function is that the stress will not saturate at high strains in a function of the form 
Y K ε= .  This type of strain hardening behavior is detrimental if modeling of localization is 
desired, since localization depends on thermal softening effects overtaking the strain hardening 
effects.  In fact, Ti-6Al-4V does saturate at high strains, so Zerilli and Armstrong replaced the 
simple strain term in the Taylor strain hardening of earlier models with the strain function in 
equation 3, which shows saturation at high strains. 

The thermal and rate effects are coupled in the exponential terms in equation 3; the parameters α 
and β are 
 εααα &ln10 −=  (4) 

 εβββ &ln10 −=  (5) 
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where α0, α1, β0, β1 are material constants.  Zerilli and Armstrong state that ε&  is the strain rate, a 
dimensional quantity.  Taking the logarithm of a dimensional quantity is at best awkward, for 
example, requiring awkward units for the constant β1.  Johnson and Cook’s approach to the 
logarithmic function was to non-dimensionalize the strain rate by a reference strain rate (1/s).  
Several unsuccessful attempts were made here to include the same approach, but none of the 
attempts were able to accurately model the data across the wide spectrum of strain rates 
(although each attempt was accurate near the reference strain rate chosen).  Finally, the following 
approach was adopted (the term βε&  is borrowed from Zerilli and Armstrong in reference 8).  

This approach does not functionally change equations 4 and 5 but only substitutes a new material 
constant for one of the original ones.  Let 

 
βε

ββ
&ln
0

1 =  (6) 

where βε&  is a material constant, but since it replaces β1 in equation 5, the model (equation 3) 

retains the same number of material constants.  The units of β1 in equation 6 are unchanged from 
the original form.  Substitute equation 6 into equation 5: 

 ⎥
⎦

⎤
⎢
⎣

⎡
−=

βε
εββ
&

&

ln
ln10  (7) 

Similar reasoning yields the new form for α: 

 ⎥
⎦

⎤
⎢
⎣

⎡
−=

αε
εαα
&

&

ln
ln10  (8) 

The awkward units of the material constants have been eliminated4.  For present purposes, strain 
rate units will be s-1.  In practice, this new form was better able than the original form to capture 
the strain rate effect on the strain hardening for Casem’s data set.  Importantly, the constants αε&  
and βε&  have physical significance.  When ε&  is less than αε& , α is positive and the exponential 

term in equation 3 decreases with increasing temperature.  This “thermal softening” (reduction of 
yield strength with increasing temperature) leads to increased strain, which leads to higher 
temperatures.  This cascade effect may lead to localization.  However, if ε&  is greater than αε& , α 
is negative and the exponential term in equation 3 increases with increasing temperature, and the 
cascade does not occur.  A similar argument applies to βε& .  Thus, large values of the two 

(relative to ε& ) are desired for modeling strain localization. 

For Casem’s data, the square root in equation 3 provided only a fair fit.  Since the empirical fits 
for the Johnson-Cook model, which are found in the literature for various materials, give a 

                                                 
4Solving equation 6 for β0 and substituting that into equation 5 will eliminate the logarithm of a dimensional 

quantity, but the fits obtained with such a form were not as good as those obtained by the method just described. 
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variety of values for the exponent of the strain hardening term (n in equation 1), optimization 
was conducted with the radical replaced by a variable exponent (i.e., an additional material 
constant).  Surprisingly, the constant was repeatedly precisely 1 in a variety of optimization 
runs5.  The optimization technique is discussed in the next section.  Analysis of equation 3 with 
an exponent of 1 shows that the algebraic form still saturates at high strain.  In fact, the model’s 
ability to capture the saturation of the data at high strain rates was improved over the fit obtained 
with the square root function.  This change also improved the representation of the strain rate 
effect.  The overall fit to the data was greatly improved, and this is quantified later.  Therefore, 
the square root in equation 3 is deleted for the present work. 

Thus for Casem’s data set, the modified form of the Zerilli-Armstrong hcp strength model is 

 ( )[ ] T
r

T eeCeCCY r αεεβ ε −−− −++= /
210 1  (9) 

with β and α described by equations 7 and 8.  This function fit Casem’s data quite well and is the 
subject of the remainder of this report. 
 

3. Calibration of the Model 

The initial (plastic strain = 0) yield strength of the material at T = 0K is Yc.  Under these conditions, 
equation 9 reduces to 
 10 CCY +=  (10) 

Additional unpublished data describing initial yield behavior of the Ti-6Al-4V at various tempera-
tures from 81 K to 693 K were extrapolated to 0 K with the use of an exponential function of the 
form of the second term in equation 9.  The value of Yc so obtained was 1356 MPa.  Thus, a 
constraint on the fit of equation 9 is that 

 0 1 1356MPa+ =C C  (11) 

C0 itself has physical significance; it is the static yield strength of the material (i.e., 0ε →&  in 
equation 9).  However, in the present work, C0 was not obtained by quasi-static yield tests but 
was fit to the data in the global process described next. 

Casem’s data, summarized in the next section, consisted of stress-strain curves for five different 
strain rates6 from 960/s to 46,400/s.  Each of the five data sets was itself an average of several 
Hopkinson Bar tests.  For present purposes, each data set was represented by a discretization of 

                                                 
5For example, omitting one of the data sets (e.g., 9585/s) or fitting the initial yield parameters independently before 

fitting the strain hardening parameters, or adding other material constants, or trying different forms for α and β. 
6A sixth data set (0.1/s) was available but was not used in the calibration process because this rate is not of primary 

importance in ballistic problems, and including it would have worsened the fit at the important high strain rates. 
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the data set into roughly 20 stress-strain pairs taken along the curve between initial yield and 
failure.  An optimum fit of equation 9 to this composite data set was sought.  The Global Local 
Optimizer (GLO) (13) was used for this purpose.  Through sophisticated mathematics, GLO 
varies all the parameters of equation 9 (with the exception of C1, which was eliminated from the 
optimization process through use of equation 11) in a systematic way and optimizes the 
predictions of the resulting equation relative to the composite data set by searching for a 
minimum of a user-defined figure of merit (FOM).  Here, the FOM was defined as 

 ∑ ∑
−

=
i j expt

calcexpt

MN
FOM

σ
σσ11  (12) 

in which σexpt is the experimental stress, σcalc is the stress calculated from equation 9, the inner 
summation (j) is over the M ≈ 20 stress-strain pairs in each strain rate data set, and the outer 
summation (i) is over the N = 5 strain rate data sets.  This FOM (x 100) is actually the average 
percentage error between the experimental stress and the calculated stress at a strain point.  The 
FOM is an indicator of the quality of the fit to the Hopkinson Bar data and is not necessarily 
indicative of the model’s performance in simulations of ballistic events.  The FOM is an 
indicator of the quality of fit when all strains and strain rates are considered, whereas the 
important part of a ballistic event may include only a subset of those (that subset taken alone 
may have a different FOM).  A larger consideration is the degree to which Hopkinson Bar 
experiments model ballistic events. 

The GLO fitting process consists of selecting a set of material constants and then marching 
through each data set from initial yield to failure, calculating the stress at each experimental 
strain.  The temperature increase in moving from one strain to the next is required during this 
process; it is assumed to be entirely attributable to adiabatic heating from plastic work and is 
calculated from  

 [ ]11 −− −=Δ iii
pc

T εεσ
ρ
β  (13) 

where i denotes the current stress-strain pair and i-1 the previous pair.  This implicit scheme is 
necessary because the temperature must be calculated before the current stress (σi) can be 
calculated.  A second order scheme (estimating σi from σi-1 and σi-2) was found to be unnecessary.  
For the present Ti-6Al-4V work, coefficient β = 0.9, ρ = 4424 kg/m3, and cp = 590 J/Kg•K.  
Adiabatic heating was included for all dynamic strain rates (960/s to 46,400/s). 

This GLO process was repeated a number of times, with material constants chosen by GLO but 
guided by constraints set by the user (maximum, minimum, starting value, etc.), until a minimum 
FOM is reached.  After this automated GLO process was completed, a manual search was done 
in the vicinity of the minimum found by GLO to further refine the solution.  Improvement was 
small but useful.  
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One final note is worth mentioning.  Examination of equation 9 shows that for initial yield 
(plastic strain = 0), the third term is always zero.  Thus, early attempts divided the optimization 
into fitting the remaining constants (C0, C1, β0, and βε& ) to just the initial yield information from 

the five data sets, then holding them fixed while fitting the strain hardening constants.  This 
approach yielded much higher (worse) figures of merit than a global approach, wherein all 
parameters were allowed to vary at once.  The reason for this is that the optimization process was 
constrained by the (albeit accurate) fit to the initial yield data points, and GLO was not allowed 
to vary those few points in order to improve the overall fit at all strains.  Since the high strain 
performance of the model is important in ballistic events, a global approach was used. 
 

4. The Fit 

The optimization process yielded the set of material constants in table 1 for equation 9, for the 
low cost Ti-6Al-4V material. 

Table 1.  Parameters for equation 9 for low cost Ti-6Al-4V. 

C0, MPa 1217 C2, MPa 3955 
C1, MPa 139 εr 0.1877 

βε& ,/s 1.597e4 
αε& ,/s 8.249e5 

β0, /K 1.591e-2 α0, /K 7.549e-3 
 
The FOM for this fit was 0.0107 or an average error of only 1.07%.  The fit obtained by GLO 
when an exponent of 1/2 was used (as in equation 3) resulted in a FOM of 0.0151 or about 40% 
worse than that obtained with an exponent of 1.  Importantly, a value of 1/2 led to lower values 
of αε&  and βε& , which is detrimental to the ability of the model to predict localization, as 

previously discussed (and a quantitative example of this is given in a later section).  Plotting the 
strain function in equation 9 (i.e., exponent = 1) shows that saturation of the function occurs at a 
strain of about 0.70 for εr = 0.20 and at a strain of about 2.00 for εr = 0.50. 

The fit compared to the discretized data is shown in figure 1.  The fit to the 0.1/s data (which was 
omitted from the FOM calculations as well as the calibration process) is shown for information.  
Even though 0.1/s was omitted from the fitting process, the model prediction still passes through 
some of the 0.1/s data points.  This indicates that the model’s predictions of strain rate hardening 
and thermal coupling (since adiabatic heating, important at the high rates, is negligible at the low 
rate) are well represented over the range of the data. 
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The strain rate effect is shown in figure 2; the bi-linear aspect of the data is apparent.  The 9585/s 
data set is near the critical point of the plot.  Since equation 9 is a continuous function, it is not 
able to closely represent the sharp cusp7 in the stress in the vicinity of this strain rate.  This 
difficulty is apparent in figure 1, where the fit to the 9585/s curve shows the most error of all the 
high rates.  As if to emphasize the critical nature of this strain rate, even the data show a high 
degree of variability.  The maximum and minimum individual tests are shown as dashed lines in 
figure 1, and the minimum actually overlaps some lower rate data.  The model prediction falls 
within these limits of the experimental variation.  The prediction of initial yield for the 0.1/s case 
is in error by about 15% in figure 2, but this is not considered a liability for ballistic applications; 
sufficient accuracy is attained by 103/s, and the important processes in ballistic problems 
typically occur at strain rates greater than that. 
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Figure 1.  Modified Zerilli-Armstrong model predictions compared to experimental data. 

The quality of the fit to the initial yield strength can be examined in another way if predicted initial 
yield stress is plotted against the exponent of the second term in equation 9 as the independent 
variable.  This exponent provides the functional dependence of initial yield on temperature and 
strain rate (recall that the third term does not play a role in initial yield strength), but Casem’s data 
are at room temperature (293 K, i.e., no temperature preconditioning and no adiabatic heating for 
initial yield).  Figure 3 shows the comparison; high rate data are at the left.  The model captures the 
data nicely, with the exception of the 0.1/s experiment, seen at the right in the plot. 

                                                 
7The cusp is probably continuous in the vicinity of 9585/s, although the slope is changing rapidly.  The curve in 

figure 2 is drawn as discontinuous for simplicity. 
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y = 105.73Ln(x) + 328.6
R2 = 0.9825
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Figure 2.  Dependence of initial yield on the strain rate. 
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Figure 3.  Evaluation of the prediction of the initial yield stress based on the form of the model. 

For comparison, the same GLO method was used to fit the Johnson-Cook model to Casem’s 
data.  Table 2 gives the resulting material constants for the function in equation 1.  The figure of 
merit for this fit was 0.023 or an average error of 2.3%.  Figure 4 shows the performance of the 
model compared to the experimental data.  The Johnson-Cook model allows only a single value 
for the material constant C in equation 1.  Since C is proportional to the slope in figure 2, the 
single “average” slope of the model allows reasonable predictions for three strain rate curves but 
misses two of the high strain rate curves.  Modifying the model to use a bi-linear slope as in 
figure 2 improved the fit to the Hopkinson Bar data but provided no improvement in predictions 
of a Taylor anvil test.  As with the modified Zerilli-Armstrong model, the Johnson-Cook model 
also has trouble with the critical 9585/s rate.  Examination of figure 4 also shows that the 
Johnson-Cook model does not capture stress saturation at high strain as well as the modified 
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Zerilli-Armstrong model.  Interestingly, n = 0.812, close to the exponent of 1 for the strain 
function in equation 9.  

Table 2.  Parameters for equation 1  
for low cost Ti-6Al-4V. 

A, MPa 840 
B, MPa 550 

C 0.0664 
n 0.812 
m 1.769 

 

 

Figure 4.  Johnson-Cook predictions compared to experimental data. 

 

5. Testing the Fit in Simulations 

Equation 9 and parameters from table 1 were tested in a series of simulations with axisymmetric 
EPIC.  Simulations of four sets of experiments were conducted:  Taylor anvil experiments, V50 
experiments using a steel projectile, penetration of a Ti-6Al-4V penetrator into semi-infinite Ti-
6Al-4V, and penetration of a tungsten penetrator into semi-infinite Ti-6Al-4V.  All simulations 
used the Mie Gruneisen equation of state, with EPIC library constants, for all materials.  All 
simulations (except some simulations of the Taylor anvil experiments; see the related footnote in 
the next section) used the Johnson-Cook fracture model, with EPIC library constants, for all 
materials.  All simulations used EPIC’s General Particle Algorithm, except for the Taylor anvil 
simulations. 
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5.1 Simulation of Taylor Anvil Experiments 

In addition to the Hopkinson Bar experiments, Casem conducted Taylor anvil experiments using 
specimens fabricated from the low cost Ti-6Al-4V material (14).  A summary of the results of 
several experiments at 205 m/s and axisymmetric EPIC simulations (10 crossed elements across 
the radius of the specimen) with the modified Zerilli-Armstrong model and the Johnson-Cook 
model is given in table 3.  Overall, both models accurately described the final deformed shape of 
the specimen.  Also included in the table is the result of a simulation using the EPIC library 
parameters for Ti-6Al-4V in the Johnson-Cook model.  Those parameters were not intended for 
the low cost material and are included to satisfy curiosity.  Actually, the result is fairly good, 
although somewhat worse than the models that were calibrated specifically for this material.  
Finally, for completeness, the prediction of the Zerilli-Armstrong bcc model from reference 7 is 
included.  This bcc model was calibrated with a different set of Hopkinson Bar data8, one that 
included strain rates from quasi-static to only 3000/s.  Overall, it was slightly less accurate than 
the present modified Zerilli-Armstrong model for replicating this experiment. 

Table 3.  Summary of the Taylor anvil experiments and simulations. 

Experiment Modified 
Zerilli-Armstrong 

Calibrated 
Johnson-Cook 

EPIC 
Johnson-Cook 

bcc 
Zerilli-Armstrong 

mm mm percent error mm percent error mm percent error mm percent error

 

 

Final Length 16.93 16.95 0.1 16.97 0.2 16.31 3.8 16.64 1.7 
Maximum Diameter 3.62 3.54 2.2 3.57 1.4 3.94 8.8 3.56 1.7 

 
More details of the EPIC simulation of the Taylor anvil test using the modified Zerilli-Armstrong 
model are given in figure 5.  On the left is a view of the strain field at 14 μs, just after the specimen 
separates (bounces) from the anvil.  In the center is the profile of the specimen at 14 μs.  Experi-
mental data points are plotted on the figure, showing quite good agreement between simulation and 
experiment.  The simulation shows a more pronounced effect of the friction at the interface between 
the specimen and the anvil.  On the right in figure 5 is a plot of strain rate at 1 μs when strain rates 
are generally the highest.  It shows that most of the impact end of the specimen is strained at rates 
of 104/s to 105/s.  However, these high rates are short lived, dropping to a maximum of 2x104/s by 
5 μs and continuing to drop rapidly. 

Some but not all of the experiments at 205 m/s (nominally) showed shear localization in the 
specimen; figure 6 shows a typical example.  Apparently, this impact velocity is a marginal 
condition for causing this type of failure.  (The experimental results listed in table 3 are average 
values for two specimens that did not localize.) 

                                                 
8The bcc model was not recalibrated with the present Hopkinson Bar data because equation 9 was developed for 

hcp Ti-6Al-4V and supersedes the bcc model for this material. Alternatively, the Johnson-Cook model makes no 
such distinction (i.e., it should be applicable to Ti-6Al-4V), so it was calibrated here for comparison purposes. 



 

11 

 

Figure 5.  Details of the EPIC simulation of the Taylor anvil test with the use of the modified  
Zerilli-Armstrong model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Photograph of shear localized Taylor anvil specimen (impact velocity of 205 m/s). 

The modified Zerilli-Armstrong model did not predict localization for this impact velocity with 
the parameter set of table 2 (see figure 5)9.  To investigate what would be required for the model 
to predict localization in the simulation, two excursions were undertaken.  In the first, the impact 
velocity was increased in several sequential steps.  Figure 7 shows that localization appears 
                                                 

9The prediction of localization in the EPIC simulations of figures 7 and 8 required FAIL=1, whereas the simulation 
of figure 5 used FAIL=0 (it was the only simulation reported here that used FAIL=0). FAIL=0 will not allow fracture 
of the material when damage exceeds 1 in the Johnson-Cook fracture model, and FAIL=1 allows degrading of the 
material strength when damage exceeds 1. 
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abruptly at 221 m/s, along the plane of failure10 seen in figure 6.  This localization begins when 
the predominant strain rate drops from a maximum of about 6x104/s to under 2x104/s, roughly 
equivalent to the value of βε& , the lower of the two strain rate constants (table 1).  This occurs 

roughly 9 μs after impact. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.  Predicted strain contours showing incipient strain localization in the Taylor anvil test (t = 11 μs is 
shown; separation from the anvil occurs at abour 14 μs). 

At slightly higher velocity, the localization seen in figure 7 extends farther from the impact face, 
but the 220-m/s case did not show localization at any time (the simulation was run until separation 
of the specimen from the anvil, 15 μs after impact).  The model prediction is consistent with two 
experimental observations.  First is the location and orientation of the localization as seen in 
figures 6 and 7.  Second is the incipient nature of the localization since the model is reasonably 
predictive of its onset (predicting the onset velocity within about 8% of the experiment).  The 
important achievement is the actual prediction of localization by the strength model. 

Variations of β0 were tested in the second excursion to investigate prediction of localization.  Each 
variation of β0 was balanced by adjustments in βε&  in order to keep β1 unchanged (in equation 6).  If 
β0 is increased by just 20%, (β0 = 1.909e-2, βε&  = 1.105e5/s), localization is observed in the simu-
lation (see figure 8).  The resulting βε&  is on the order of the highest strain rates seen in the Taylor 

anvil simulation of figure 5.  This small change in constants is also consistent with a marginal 
localization condition seen in the experiments.  If β0 is increased by 50%, (β0 = 2.387e-2, 

βε&  = 2.022e6/s), localization is more organized and occurs at an earlier time, as seen in figure 8.  In 
this case, βε&  is greater than the highest strain rates seen in figure 5, and this is most likely the cause 

of the improved localization.  The deformation of the specimen seemed to be ending at about 9.5 μs 
(see the inset graph in figure 8).  When the localization formed at 11 μs, deformation continued in 
earnest.  The simulations of figure 8 are the only uses of these sets of constants reported here.   

Subsequently, the optimization of the model constants was re-run with this latter value of β0 and 
βε&  fixed (FOM was 1.67%).  A simulation using this set of constants did not show localization, 

                                                 
10The term “plane” is used loosely in the context of the simulation since the simulation is an axisymmetric 

calculation. 

220m/s 221m/s
Fi 7 / EPIC/d i64i 05/ ZA 3/h il ZA 3/d 204 5/ d f
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most likely because of the reduced value of αε&  = 5.13e4 that resulted from the GLO optimiza-tion.  
This low value (relative to 8.249e5, the value from table 1 used for figure 8) overpowers the 
increased value of βε&  and allows rate hardening to overtake thermal softening too soon.  

Prediction of localization thus requires both α and β to be positive at the highest strain rates seen 
in the problem, or at least the combined effect must be positive (e.g., one can be slightly negative).  

 

Figure 8.  Localization in the Taylor anvil simulation attained when the value of β0 and βε&  

was increased. 

5.2 Simulation of a V50 Experiment 

Burkins et al. (11) studied the effect of annealing temperature on the ballistic limit velocity of 
28.5-mm-thick Ti-6Al-4V plates attacked by a 20-mm steel fragment simulating projectile 
(FSP).  They found the V50 of this configuration to be between 1092 m/s and 1141 m/s for the 
various annealing conditions studied.  In those shots that resulted in perforation of the target,  
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failure of the target was observed to occur by plugging (i.e., shearing out of a cylindrical plug of 
target material ahead of the penetrator).  In those shots that resulted in incomplete penetration, 
shear bands were often observed parallel and perpendicular to the direction of fire.  Figure 9 
shows a typical example (from reference 11; reprinted by permission of the principal author). 

 

Figure 9.  Sectioned view of the impact crater and remaining plate from a V50 experiment (taken from 
reference (11); reprinted by permission).  (Striking velocity was 1106 m/s, near the limit 
velocity.)  

The test configuration was simulated in axisymmetric EPIC with the use of a 20-mm-long by  
20-mm-diameter steel cylinder (10 crossed elements across the FSP radius) and the model of 
equation 9 and table 1.  Results of two significant simulations are shown in figure 10.  At 
1020 m/s, the FSP was unable to perforate the target (notice that it has begun to rebound out of 
the target at 120 μs), although some spalling occurs on the rear surface.  At 1040 m/s, spalling 
also occurs at the early time, but perforation is clearly occurring at the late time.  Thus, a 
predicted V50 of approximately 1030 m/s is indicated, which is within 6% to 11% of the 
experimental values.  

The most striking feature in figure 10 is the appearance of strain localization at the 1040-m/s 
impact velocity.  Thus, the threshhold perforation at 1040 m/s is accomplished by strain localiza-
tion in the target and plugging of the rear portion of the target, consistent with what was observed 
experimentally by Burkins et al. (11, 15).  The simulation even shows a small amount of the 
perpendicular shear banding, which indicates that the origin of this failure seen in the experiments 
(figure 9) is more than just metallurgical (e.g., from the rolling of the plates during processing).  

shear bands 



 

15 

Strain rate contours in figure 10 show that the highest rates in the 1040-m/s case are about 105/s, a 
strain rate slightly greater than βε&  and slightly less than αε&  (table 1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.  Localization and plugging in simulations of V50 experiments with the use of equation 9 to model 
the target.  (Experimental V50 for this target was approximately 1100 m/s.) 

When the impact velocity was increased to 1300 m/s, a second cylindrical localization band 
appeared at a slightly larger diameter than the primary band (that of figure 10).  The slight per-
pendicular shear banding observable in figure 10 for the 1040-m/s case became slightly more 
pronounced.  At 1400 m/s, the localization and plugging continued to mark the failure process, 
55and the small perpendicular shear band became slightly more pronounced.  The plugging and 
localization continued until at least 1500 m/s, but at a velocity of 2000 m/s, no plugging or 
localization was observed—just massive deformation and failure as the FSP pushed violently 
through the target. 

For comparison, the Burkins’ et al. V50 experiment was modeled with the Zerilli-Armstrong bcc 
model from reference 7.  The V50 for the bcc model was about 1400 m/s, a significant error.  
Even though that model did not include any explicit measures to model localization as does  
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equation 9, the bcc model did show the beginning of localization.  Figure 11 shows a good 
example.  However, the localization seen in figure 11 did not grow at times beyond 40 μs, and at 
higher velocity, the localization was swamped by widespread failure of the material ahead of the 
penetrator.  Thus, the localization did not develop into plugging as seen in the experiment (figure 
9) and in the simulation (figure 10).  One reasonable interpretation of this outcome is that the 
coupling of strain rate hardening and thermal softening is well represented in both the bcc model 
and the present model (the coupling is in the exponential terms, which are similar in the two 
models), but the Taylor strain hardening of the bcc model inhibited growth of the localization, 
whereas the strain function of the present model favors that growth. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.  Nascent localization with the Zerilli-Armstrong bcc model in simulations of V50 experiments  
(1200-m/s impact velocity shown). 

5.3 Simulation of Ti-6Al-4V on Ti-6Al-4V Penetration Experiments 

Meyer and Kleponis (7) performed penetration experiments using semi-infinite targets fabricated 
from the Ti-6Al-4V material, impacted by penetrators made of the same material.  A summary of  
a portion of their results is shown in figure 12.  Their experimental results are shown as the solid 
symbols, and the line is a fit to the data.  The open triangles show the results of 3-D CTH simula-
tions using the Zerilli-Armstrong bcc model, included here for comparison.  The open squares 
show the results for axisymmetric EPIC (five crossed elements across the penetrator radius) with 
the current model.  Predicted depth of penetration (DOP) is reasonably accurate from 1200 m/s to 
1600 m/s, but the error is substantial at 2000 m/s.  Maximum strain rates at this impact velocity are 
greater than 106 in the target, higher than the data used to calibrate the model, and 105 in the 
penetrator, slightly higher than the data.  Maximum rates were about one-third as high at an impact 
velocity of 1600 m/s.  Efforts are under way to install this model into CTH in order to conduct 3-D 
simulations for direct comparison to the bcc model predictions. 

40μs 120μs

strain contours
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Figure 12.  Simulation results compared to experiment and 3-D CTH with an earlier ZA model. 

5.4 Simulation of the Penetration of the 190W Round Into Ti-6Al-4V 

Gooch and Burkins (16) studied the performance of Ti-6Al-4V attacked by various penetrators, 
including the 190W, which is an l/d=20, 93% tungsten rod, 190.5 mm long.  Impact velocities 
for the 190W were between 950 m/s and 1700 m/s.  Gooch and Burkins recorded the DOPs and 
fit those data with an analytical function, plotted as the solid line in figure 13.  Plotted as open 
symbols in figure 13 are results of axisymmetric EPIC simulations (five crossed elements across 
the penetrator radius) with three different strength models for the Ti-6Al-4V.  The 190W was 
modeled with the Johnson-Cook strength model using constants from reference 4 (except the 
yield strength here was 1.17 GPa), the Mie-Gruneisen equation of state (EOS), and the Johnson-
Cook fracture model.  EPIC library constants were used for the EOS and fracture model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13.  Axisymmetric EPIC simulation results for the current model compared to experiment and 
other models. 

Predictions of depth of penetration into the Ti-6Al-4V were inaccurate when the Ti-6Al-4V was 
modeled with the Johnson-Cook strength model using constants from the EPIC library (open 
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circles in figure 13).  This shows the error of using that constant set to model the low cost Ti-
6Al-4V material.  The 300-mm-thick target was perforated at 1700 m/s with that model.  When 
the set of constants in table 2 is used with the Johnson-Cook strength model, results are much 
improved (open triangles in figure 13), although inaccuracy increases as impact velocity is 
increased.  Results are much better over the range of 1100 m/s to 2000 m/s when the modified 
Zerilli-Armstrong model is used with constants from table 1.  
 

6. Conclusion 

The Zerilli-Armstrong hcp model was modified and fit to high rate Hopkinson Bar data.  The fit  
to the data was very good.  The model was installed into EPIC and performed well in a varied 
series of axisymmetric simulations.  It did not perform well for the case of a Ti-6Al-4V penetrator 
impacting a block of Ti-6Al-4 V at 2000 m/s. 
 

7. Recommendation 

Because CTH is used for large scale penetration simulations at ARL, the model should be installed 
into CTH and tested in the same series of simulations with 3-D CTH.  Numerical effects of the 
axisymmetric calculations (e.g., anomalies on the axis of symmetry) in EPIC may have affected 
the high-velocity EPIC penetration simulations, and this provides additional motivation to examine 
the model’s performance in 3-D CTH. 
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